Finite Upper Half Planes over Finite Fields
نویسندگان
چکیده
منابع مشابه
A trace formula for finite upper half planes
In this paper, we prove a trace formula for finite upper half planes Hq. A brief outline is as follows: Fix a subgroup Γ ⊂ GL(2, Fq). The adjacency operators Aa act on functions in L(Γ\Hq); thus, we may consider Aa = Aa|L2(Γ\Hq). We prove a trace formula which is an equality between a weighted sum of the traces of the operators Aa and a sum over the conjugacy classes of Γ. The trace formula all...
متن کاملClassical Wavelet Transforms over Finite Fields
This article introduces a systematic study for computational aspects of classical wavelet transforms over finite fields using tools from computational harmonic analysis and also theoretical linear algebra. We present a concrete formulation for the Frobenius norm of the classical wavelet transforms over finite fields. It is shown that each vector defined over a finite field can be represented as...
متن کاملClassical wavelet systems over finite fields
This article presents an analytic approach to study admissibility conditions related to classical full wavelet systems over finite fields using tools from computational harmonic analysis and theoretical linear algebra. It is shown that for a large class of non-zero window signals (wavelets), the generated classical full wavelet systems constitute a frame whose canonical dual are classical full ...
متن کاملMaximal integral point sets in affine planes over finite fields
Motivated by integral point sets in the Euclidean plane, we consider integral point sets in affine planes over finite fields. An integral point set is a set of points in the affine plane F2q over a finite field Fq, where the formally defined squared Euclidean distance of every pair of points is a square in Fq. It turns out that integral point sets over Fq can also be characterized as affine poi...
متن کاملStructure of finite wavelet frames over prime fields
This article presents a systematic study for structure of finite wavelet frames over prime fields. Let $p$ be a positive prime integer and $mathbb{W}_p$ be the finite wavelet group over the prime field $mathbb{Z}_p$. We study theoretical frame aspects of finite wavelet systems generated by subgroups of the finite wavelet group $mathbb{W}_p$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Finite Fields and Their Applications
سال: 1996
ISSN: 1071-5797
DOI: 10.1006/ffta.1996.0005